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PREFACE

The research reported in this Memorandum was begun

under sponsorship of the National Aeronautics and Space

Administration. A considerable portion of the work was

conducted at the Langley Research Center, Langley Air

Force Base, Hampton, Virginia, where Mr. Elliott is a

NASA aerospace engineer. Mr. Dreyfus, of The RAND Corpor-

ation, participated in the project while on a leave of

absence from RAND. The project was completed and the

manuscript prepared following Mr. Dreyfus' return to RAND,

his share of that work being sponsored by U.S. Air Force

Project RAND.

The linear feedback guidance scheme developed

simplifies the problem of correcting space craft inflight

disturbances, which is particularly important in space

vehicle rendezvous applications and initiating post-launch

flight corrections.

NASA has agreed to publication of the work in this

form.
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SUMMARY

A theory developing a linear feedback guidance

scheme to correct for inflight disturbances of a vehicle

during the course of a space mission is presented. The

theory is predicated on the use of a nominal optimal

trajectory. The scheme consists of a linear combination

of (1) perturbations of the vehicle state from its

nominal state, and (2) time-varying gains to determine the

control correction required to satisfy the constraints of

the trajectory in an optimal fashion. Exact knowledge of

the state of the vehicle is assumed.

An analysis of numerical results for an idealized

rocket trajectory problem shows the linear feedback

guidance scheme to be effective over a wide range of

chosen perturbations.
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I. INTRODUCTION

Suppose that, for a particular vehicle and space

mission, an optimal trajectory has been determined. Let

us call this optimal trajectory, associated with the

specified initial conditions and computed before launch,

the nominal trajectory. Suppose further that due to

abnormalities during flight the vehicle deviates from

this trajectory. ror the specified mission there is now

a new optimal trajectory associated with the new state

(i.e., position, velocity, mass, etc.) of the vehicle,

and neither a return to the nominal trajectory nor

continued use of the originally programmed control is

desirable.

This Memorandum develops a simple linear feedback

guidance scheme which determines the control correction

necessary to yield a "corrected" optimal trajectory if

the vehicle is slightly perturbed from its original

optimal trajectory. Exact measurement of the state of

the vehicle at discrete time intervals is assumed. The

control correction rule is a linear function of the state

variable deviations from nominal with time-varying

coefficients that are computed and stored before flight.

The technique of derivation is akin to dynamic

programming [E]. We shall define an auxiliary function

of the state variables to be called the optimal return
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function, characterize it by means of the principle of

optimality, and then deduce the guidance scheme from the

resulting relations. We shall approximate the optimal

return function in the neighborhood of a given optimal

nominal trajectory rather than compute the optimal return

function for all state space. This is accomplished by

computing the first and second partial derivatives of

the optimal return function associated with the nominal

trajectory. Thus, at least to first order, we obtain the

optimal return function for any state slightly perturbed

from the nominal trajectory. For large deviations from

nominal, the approximation is in error and the guidance

scheme is inaccurate. The meaning of "small deviation"

depends on the extent of nonlinearity of any particular

problem and can best be determined by numerical experi-

mentation.

The problem stated above has also been studied by

Breakwell and Bryson [2] and by Kelley [31. Their

mathematical approaches differ considerably from ours,

and the computation of their linear guidance rule involves

quite different numerical operations. Presumably, however,

the end results are mathematically equivalent. Questions

of comparative numerical efficiency and accuracy of the

three methods remain to be investigated.
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II. THE PROBLEM

The optimal trajectory problem we shall consider

has the following discrete-time statement. Find that

sequence of controls,

[u(t)), t = to$ to + ', to + 21, (2-1)

such that the dynamical system governed by the difference

equations

xi(t + 6) = xi(t) + fi(xl(t), . . . (2-2)

X N-l(t), t,u(t) A, i = ,. o I N N-

xi(to) - Xi , i = 1, . .. , N - 1 (2-3)

evolves in such a way that the function

S(xl(t), ... , xNl(t), t) (2-4)

is minimized at some unspecified time t determined by

the satisfaction of the m terminal conditions

xNl(t), t) = 0 (2-5)

j W 1, . ., m < N.
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That is, we want to determine a control function u(t)

that minimizes an objective function .(X . .. , xN- 1 ,t)

at a terminal time determined by the simultaneous satis-

faction of m terminal conditions. For the sake of

simplicity of notation we define and use

x-t

fN 1.

We state the problem discretely since it must be

solved digitally and used mechanically in a discrete way.

Analogous continuous results are easily obtained by

letting A approach zero.
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III. THE GUIDANCE EQUATIONS

We assume that associated with any set of feasible

initial conditions xi , i = 1, . . ., N, there exists

an optimal trajectory to the desired terminal state and

an associated minimal value of • at the end point. Let

us define the optimal return function Sxo. " " ", XNo)

by

Sx • •., xN )- the value of cp at the terminal

time determined by * j = 0,

where the vehicle starts in state

X 1 "0, .. , XN and an optimal

trajectory is followed.

The function S(X . .,NO) satisfies the relation

S(xloP x) (3-1)

- M~n[5(x1  + f •1  • . ., XN, o >,.*

+ fNoxlo' " x u

where uo M u(t )MIUXN) To simplify notation we write

f t fo f ~x0' . .I' xN01uo).
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Equation (3-1) is a statement of the fact that the

minimal terminal value of V (i.e., optimal return)

associated with a given state at time t 0 equals the

optimal return associated with the state at time (to + 6)

yielded by the control action u at time to where

U(t 0) has been so chosen as to yield that state at time

(to + 6) with minimal return. This reasoning is called,

by Bellman, the principle of optimality.

The above characterization of S implies two

equations. The first of these is a necessary condition

for optimality; i.e., that the right-hand side of (3-1)

be a minimum with respect to all admissible controls uo*

If u is unbounded, we minimize by differentiation and

obtain

N BS (xlo + floA, No + fNo af i)7- 1) 0 - 0 (3-2)
a ýio + f i Bu 0i-l 0ý

In equation (3-2) we have used the chain rule for the

derivative of a function whose arguments are, in turn,

functions. The second equation is a statement of the

fact that, on the optimal trajectory from any initial

state, the value S is invariant, regardless of the

particular initial state. That is

S (Xl.' x N ) = S ( 10 + f 10 AP 6) NO + fNO 6) (3-3)
0 

x
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where the f, are evaluated using the optimal uo.

Note that the optimal uo, U0 *, defined by equation (3-2)

depends on the point in state variable space since both
as and fo depend on the state.

100

We now wish to consider the nominal trajectory,

which is the optimal trajectory from a particular specified

initial state. If we think of time as indexing each

point in state space along this trajectory, S has the

same contant value at each time.

TS ) = ,etc.,

have numerical values which depend on the time, and the

combination of the derivatives defined in (3-2) is zero.

For convenience and to simplify notation we use

double subscript notation to denote summation. Also

since we will be concerned with adjacent states in state

variable space (i.e., proceeding discretely in time) we

drop the subscript o and use the following notation to

denote evaluation of the partials at the appropriate time:

bS(xl + flA' " " N + fNa) as

xNut t+A
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Rewriting equations (3-2) and (3-3) in this notation we

have

•S •fiasi uaf- " 0+ (3-4)

St" S (3-5)

Our object is to determine u the rate of

change in optimal control u associated with a per-

turbation in the nominal value of x j at time t. Since

equation (3-4) determines the optimal control, we take its

partial derivative with respect to xj keeping in mind

that the optimal control decision u may change due to

this perturbation in xj. This yields

a2 2s 2 ff (3-6)

au*
1 .7

which gives 7u in terims of the first and second partial

derivatives of S evaluated on the nominal trajectory.
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To determine a recurrence relation for Tx- on the
j

nominal trajectory we take the partial derivative of (3-5)

with respect to xj. This yields

as +s as af (3-7)K I t+A T - I t+A XJ I t
where we have used the fact that

St

is zero (see equation (3-4)).

To obtain a recurrence relation for a2.S on the
iiL

nominal trajectory we differentiate (3-7) with respect to

x1 , obtaining

2S - [ +I TS (3-8)

+Ia zl ax xi a x, Ixia XI
tJ t+& ItA

____ T u X.

+ g x i ax k t + xL t + T u r t T x' r x -I
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X "
t+& t t tLI

Given the first and second partial derivatives of

S at time t + 6 along the nominal trajectory, equation
bu*

(3-6) allows us to compute T- at time t. EquationsJ
(3-7) and (3-8) yield the first and second partial deri-

vatives of S at time t thus allowing the continuation

of the backward recursion.

Once we know a u'the change in optimal control

dictated by a change in state, as a function of time

along a nominal trajectory, the linear rule

N
8u (t) - L =j(t)8x it) (3-9)

j-l

yields the change in u required to correct for devia-

tions from nominal, 8xj, in the state variables.

This is the linear feedback guidance scheme. The

time-varying coefficient functions in (3-9), auj*(t),
J

are computed along the nominal trajectory before flight

by recursion of equations (3-6), (3-7), and (3-8), and

stored in the guidance computer. During flight, at time

to + kA when the states are observed, the state devia-

tions from nominal are multiplied by the proper stored
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coefficients and summed, as indicated by equation (3-9),

to obtain the proper adjustment, 8u *(t), in control.

In the next section we derive the terminal values of

as and 62 that allow the backward recursion of

equations (3-6), (3-7), and (3-8).
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IV. BOUNDARY VALUES

The proposed guidance scheme involves the computation

of the second partial derivatives of S backward from the

terminal time along a nominal (optimal) trajectory as well

as the necessary partial derivatives of the control. The

terminal values can be deduced by at least two methods.

Method I yields some physical insight into the nature of

the limiting process involved; however, it is cumbersome

and impractical for complicated problems. Method II

appears to be more practical and is recommended for general

usage.

Method I--A set of terminal equations

T(Xl, . 's..,XN) w 0 j =- , . . ., m (4-1)

is satisfied at the final time T by the nominal

trajectory. Let a change from nominal in any state at a

time t shortly before T occur. The control must then

be adjusted so that the m constraining equations remain

satisfied at the, perhaps changed, terminal time.

Let us evaluate Tj at terminal time T by means

of a Taylor series expansion about time t shortly before

T. Thus

yj(T) - TY(t) + (T - t)iW(t) + (T2" t)2 ij(t) + .... (4-2)
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The fact that Yj(T), where T is the terminal

time which may change if we change state at time t,

must equal 0 at the terminal time, yields the m

equations

6 T (t) bT
0+ M (t) (4-3)

axi(t) autxiit) •it

+ (T - t)[dx'(t) +j7 4  dx(t)j+ . . . j - li, . , m

corresponding to state xi.

Since •' depends on the control u , V upon u

and u , etc., the above m linear equations can be

solved for the m quantities

•xi TRIM xit, . . axlit) (4-4)

in terms of the nominal state variables and control.

Now, writing the objective function p, similarly,

as

T(T) - ep(t) + (T - t)ý(t) + .. , (4-5)
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we have

- ocp(t) + IT (t) (4-6)
)+xi(t) rxi(t)

+ (T - t) In••"ct + +.

Since the left side of equation (4-6) is by definition

t

we now have the values of the first partial derivatives of

S along a nominal. trajectory at a time t just before

the terminal time T. As t - T

axi (t) P axi (t)

etc., in expression (4-4) approach infinity, so we begin

the backward recursion a small time A before the terminal

time. Then these quantities are large but finite.

To obtain the second partial derivatives of S we take

the partial derivative of (4-6) after substituting for

XlT) ' •xi '
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etc., their known equivalents in terms of state and con-

trol variables. This gives expressions for the second par-

tial derivatives of S near the endpoint and equations (3-6),

(3-7), and (3-8) can now be solved by backward recursion.

As will be seen in subsequent sections where the

above scheme is illustrated, the algebra involved in this

method of evaluating the terminal boundary values is tedious.

Method II--This method is an adaptation of the work

of Breakwell and Bryson [2]. It uses a portion of their

scheme for optimal linear feedback guidance to determine

the necessary partial derivatives of the control with re-

spect to the state variables and those terminal second

partial derivatives necessary in our approach.

The following results hold at the terminal point of

a nominal (optimal) trajectory.

STi 'j(xl,...,xN) ' 0 j - l,...,m (4-7)

S i. ,...,N (4-8)

=Sfi - 0. (4-9)

x.i

The vj above are m auxiliary numbers produced during

the computation process of determining the nominal tra-

jectory [4]. On a neighboring optimal trajectory (which

is within some region where the assumption of linearity

is valid) that satisfies the constraints of the problem,

the following N + m + 1 equations hold. (Time is assumed
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to be the independent variable in the following.)

•-i. 8X + • dtf - 0 J - 1, . . m (4-10)

FJS d (bs> 2C 2
6 + f 6xk + X 6xk (4-11)

aT. d b(Ti df+ dv j 7 • + -a..t•- ( + Vj dt;xii,• . N

6 f + 7- k 6x - 0 (4-12)

The evaluation of the terms in the above three equa-

tions is made at the final time on the nominal trajectory.

It should be noted that use of the fact that

as C•f

has been made in equation (4-12). The dv and 6'IS
as k(xi/

are the changes in vj and ri at the terminal time tf

of the nominal trajectory, required to satisfy the con-

straints of the problem in the additional time dtf due

to the perturbations 8xi at nominal terminal time tf.

Thus we have N + m + I equations in 2N + m + 1 unknowns.

Hence, there are N independent variables and the

remaining variables are considered dependent. The
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equations relating the independent variables to the

dependent variables are determined at the terminal time,

tf, of the nominal trajectory and used as boundary

conditions for the backward integration of the linearized

equations applicable to an optimal trajectory; that is,

the differential equations of motion and the differential

a)s
equations for the multipliers (here .xS). Also in

order to solve for 6u, the necessary condition for

optimality is linearized. These equations are

d afi Bfi
•( 8 xi) = - 6xj + -8u (4-13)

d ( •as aS a 2 f
'-iE6 T• i" X 6ixk (4-14)

af. aS •s a2 f

as a2 f Fas ()2f af.(a ]
I 6u - 8xk + (4-15)

ax au ax a ak k aui uaxk (6 "8-X

The linearized equations are solved backward in time N

times, where each time all but one of the variables at the

terminal time are assumed zero. The value of one is

assigned to the remaining term in turn until all N terms
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have been used in this manner. This will be clearer

after examination of the example problem. Next we solve

for (8 IS) at time t in terms of the 6x at timeSxi

t. Then holding all 8xi except 8x zero, we solve

for

8 ?IS
Axi at time t.

This is the desired a2S In similar fashion we solveaxiaxj •

equation (4-15) for 8 u I in terms of 8 xi and

interpret • as T-u. We then use these values as the

boundary values to initiate recurrence equations (3-6),

(3-7), and (3-8).
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V. A SIMPLE EXAMPLE

To illustrate the above concepts, let us study a

simple problem with a known solution. We wish to program

the direction Y(t) so that a particle moving in a plane

at a constant velocity V reaches a fixed point (xl, yl)

in minimum time. Here, in our previous notation,

x(t + A) - x(t) + (V cos Y(t))A (5-1)

y(t + A) - y(t) + (V sin Y(t))A

CD(x,y,t) = t

Y1 (x,y,t) - x - xI - 0

¥2 (xy't) = y " yl - 0

where cp is the objective function to be minimized and

T, and 'f2 are terminal conditions.

Starting at the point (x 0 , yo) we determine, in

this case by inspection, that the minimum time trajectory

is a straight line between (xo, yo) and (xl, yl).

The optimal time of arrival at (xl, yl) starting

at any initial point (xo, yo) at time to is then

X T "o2 + (Y, - Yo)2

S(xoYo0 to) - to + v(xT + .0 (5-2)
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To deduce the appropriate boundary conditions by

Method I, we let

YTJ - x(T) - - x(t) - xI + (T - t)V cos Y (5-3)

+ (T 2
t2(. V sin YY) + . .

S2(T) - y(T) - Y- - y(t) - yj + (T - t)V sin Y

(T t)2v ')
+ 2 cos Yy) + ..

Then

ai1(T) aT ay1 0 - 1 +V-£ V cos Y + (T - t)(- V sin y) W- (5-4)

aY 2 (T) BT ay
x(t) 0 - V sin Y + (T t) V cos Y y- , (5-5)

neglecting higher order terms.

Hence,

aT cos Y By sin Y (56)
Tx- -~'-V-- Tx V(T -Q
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Then, since

cp(T) - T,

SS T Co - Y (5-7)

Similarly, replacing x by y in the above derivations,

BT sinY (5-8)

ay cos Y

aS sin Y

These results are easily verified directly by

differentiating (5-2). For example:

as (x1 - xo)

x- 
(5-9xo0 V V(xl- xo) 2 + (yl - Yo)2

x1 - xo
T - to cosy

V I 
M__ 

_ _ _ _ _ _ _ _ - m__ _ _

_ tx" Xo•__ _ Y_ _ _ Y2 /2 +I.2

in the limit as to T.
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Continuing, we derive a typical terminal value of a

second partial derivative of S. Partial differentiation

of (5-7) with respect to y yields

a2S sin Y sin Y cos Y

axay V V2(T - t)

Again, since the exact form of S is known in this

example, this result can be verified:

_ 2S (xl " Xo)(Y l " Y.)
-. - z 2 (5-10)

bX oaYo V((Xl " xo) + (Yl "Yo))

= _ sin Y cos Y

V(T- t)V V 2(T- t)

For the purpose of illustrating the use of Method II,

we observe as pointed out in Chap. V of Bellman and

Dreyfus [1l, that ý is equivalent to Xxi, the

familiar multiplier functions of the classical calculus

of variations. We also replace the difference equations

(5-1) by differential equations and include time as a

state of the system. Our system becomes

x V cos Y ix = 0 (5-11)

y-V sinY X -0
y

t-l )L -O
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The optimal policy to be followed, Y is given by

SxV sin Y + XyV cos Y - O s tanY* - . (5-12)x yx

From the terminal conditions of the optimal nominal

trajectory we have (where superscript f denotes final

value)

xf - Vl; Xyf y v2 ; Xtf- 1 . (5-13)

Since the time rate of change of the multipliers is zero

we have

xx W V1, xy - v 2 and Xt - . (5-14)

From the transversality condition at the terminal point

and the optimal policy condition

f sin Y . V (5-15)
y V 2

xf Cos Y
x ==

Then applying Method II to determine conditions on a

neighboring optimal trajectory, equations (4-10), (4-11),

and (4-12) become

8x + V cos Y dt - 0 (5-16)

8y + V sin y dt - 0

6Xx - dvI W 0

6ky - dv2 = 0

xt = 0
6kXV Cos Y + 6 y V sin y + Rxt W 0.
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Since N - 3 and m - 2, we have 6 - N + m + 1

equations ir nine unknowns (2N + m + 1). (The unknown

8t does not appear since its coefficients are always

zero.) We wish to choose three of the unknowns as

independent such that the coefficients of the remaining

six when written in matrix notation form a non-singular

matrix. That is, we wish to form the matrix equation

AX- F

and solve for X

X -A-IF

In the above, we choose 6t, 6Xy, and dt as

independent. Choosing a convenient order we have,

6x 1 0 0 0 0 0

8 1 0 0 0 0

X dv A 0 ;(5-17)

dv 2  0 0 0 -1 0 0

8%t 0 0 0 0 1 0

R 0 0 0 0 1 V cosY

tf tf

V cos y dt

V sin Y dt

0
F = 6X,

y
0

V sin Y 6XY- tf
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and

"V cosY 0 0 0 0 0

0 V cos Y 0 0 0 0

0 0 -V cos y 0 -1 1

V cos Y 0 0 0 -V cos " (5-18)

0 0 0 0 V cos Y 0

0 0 0 0 -1 1
tf

Then writing the state variables and the multipliers in

terms of the independent variables we have

[x [0 -V Cos Y 0] [8k

8y 0 -V sin Y 0 dt (5-19)

6t 0 8] 6tf

tf tf tf

x 81-tan Y 06xl r
6xyI 1 0 dt

LXtJ 0 0t
tf tf tf

Now the linearized differential equations (equations (4-13)

and (4-14)) become
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d (x) V2 sin Y [), cos Y - 6X sin Y (5-20)

d ( 6y) V2 cos Y 6X cos Y - 6X sin Y

d
dt (6t) - 0

(6Xk) r (6X) -r4 (6kt) -0

where
(6X y cos Y - 6X sin Y)8y - (5-21)
X cos Y +X sin Yx y

has been simplified and substituted into equations (5-20).

Setting each of the independent variables, in turn, equal

to 1 while the other two are set equal to 0 and integrating

the linearized differential equations backward in time

with initial conditions determined from the matrix

equations (5-19), we have

6k-tan Y o] 0 1X

)Ly:j 1 0 0 td
t  (5-22)

6XtJt L 0 0 01tf Pt tf

[x -V2 tan Y (tf-t) -V cos Y 0X

6y V2(tf - t) -V sin Y 0t . (5-23)

L t f -6t it f
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Solving equation (5-22) for 6Xy, dt, and 6t at time tf

in terms of the state variables at time t and inserting

in equation (5-23), we have

X, ~V tan Ysin Y -V sin Y d

•C Cos Y -V sin Y V cos Y 6yl. (5-24)

6 V(tf-t) 0 a interpreL tJ t -tf t

Now we let 6y - 6t 0 and interpret x x- etc.

Thus we have

62 S sin27 (5-25)
a " V(tf - t0

a2 S cos 2 y

by v(tf - t)

a2S sin Y cos Y

S-- VZ(tf- t)

Solving for 6Y (equation (5-21)) in terms of 6 x and 6y

at t in a similar manner, we have

Y . sin Y (5-26)

T- V~f- CO)

BY Cos Y7S= " •(tf - t)
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VI. AN IDEALIZED PRACTICAL PROBLEM

To further illustrate and clarify the concepts

developed here, an idealized practical problem has been

solved. The problem is to determine the thrust attitude

program of a rocket vehicle which will yield the maximum

attainable horizontal velocity at specified terminal

conditions of time, altitude, and vertical velocity.

The following idealizing assumptions are made:

1) Vacuous atmosphere

2) Flat earth

3) Constant gravitational acceleration

4) Constant thrust acceleration.

The differential equations of the system are

h-v h 0 (6-1)

v - a sin e - g iv X h Xv _-X ht + XV

u-acos i - 0

where

h - altitude

v - vertical velocity

u - horizontal velocity

a - thrust acceleration (constant)

g - gravitational acceleration (constant)

e - angle of thrust acceleration above the horizontal

t - time.
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It is well known that one can determine the form of

the optimal policy for this problem from the necessary

condition for optimality; that is

X
tan e*-v -Xht- v (6-2)

The quantity to be maximized, ep, and the constraints,

of the problem are

= -u (6-3)

#1 = h - hf - 0

-2 v - vf = 0

3 =t- tfMO .

For given initial conditions, an optimal trajectory can

be determined which will satisfy the desired terminal

conditions. Our problem then is to determine the optimal

control action necessary to correct for small disturbances

in this nominal trajectory. That is, we wish to determine

the coefficients of 6x in equation (3-9). For this, we

need to determine the recurrence relations, equations

(3-6), (3-7), and (3-8), and the boundary conditions

required to initiate the recursion.
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VII. RECURRENCE RELATIONS AND BOUNDARY VALUES

To derive recurrence relations for this problem, we

define S by

S - optimal e final - optimal u(tf) . (7-I)

We note that it is unnecessary to obtain the

coefficient-F in our guidance rule since at time tk a

perturbation of time of 6t from nominal can be regarded

as a deviation in position and velocity from the nominal

states at time tk + 6t. That is, any one state can be

used to index points on the nominal and errors can then

occur only in the other states. For rendezvous problems,

time is not always the best indexing variable. Rewriting

equations (6-1) as difference equations, we determine
be be be

the recurrence equations for -, .- , and --u to be

•ae
a2S acos + a a a cose I +-oal

It

where
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k - 2 a cos2e - as c 0l (7-3)
t+V A t t+A t

as
a sin 0t+A t

Since k u- 0 we must have

be -0 . (7-4)

Therefore we need only concern ourselves with and

deviations in horizontal velocity being irrelevant to

the control action, as can easily be seen physically.

The necessary recurrence relations are

t a 9I+ (7-5)

Tu-a-1

It
as tas as

I1 t -~t+& t

a S _~ + a~ a cos 2S2 
be i t'aht bh 2 It+ I~ I t+A l7 t
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1 + acose TI
t I t+& t + t+A

I ( ( e

='V( I ývt A r
+ 2 -s' + A B2 S

t+A

be aeThe boundary conditions on •, .- , and the necessary

second partials of S have been determined by Method I,

and verified by Method II. However, the use of Method II

only is illustrated in the following. Here we again use

the notation that

-i Xxi
7dxi xi*

From the terminal conditions of the problem we have

Xh f " Vl, Xvf XtV 3  (7-6)

which, by virtue of the differential equations of the

multipliers, implies

Xh(t) - vl, Xv(t) - tan 6(t), Xu(t) - 1, (77)

xt(t) - v 3
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Application of equations (4-10), (4-11), and (4-12) results

in

8h + v dt -0 (7-8)

6v + (a sin e - g)dt - 0

6X h - dvI 1 0

6kv " xh dt - dv 2 X 0

u
6Xt - dv3 = 0

6XhV + 6Xv(a sin e - g) + 6Xu a cos e + 6Xt + kh6v - 0.

Choosing 6 Xh, 6Xv, 6 u, and 6t as independent and operating

as before, we have

6h -1 0 v 0 0 0 00 0

6 v 0 -1 B 0 0 0 0 0 0

dt 0 -1 0 0 0 00 6t: (7-9)

dv 0 0 0 1 0 0 0 0 6xh

dv2  0 0Xh 0 1 0 0 0 v

6ku 0 0 0 0 -1 00 0

dv3  0 h -BXh 0 0 a cos e 1 -1 0

6xt 0 h 0 -BXh 0 0 a cos 8 0 - v6xh+B6X1
tf tf -tf

where B - (a sin e - g).

Writing the multipliers and the state variables at

time tf in terms of the independent variables, we have
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6Xh 1 0 0 0- x

6X 0 1 0 0 6X l
V v I(7-10)

6Xy 0 0 0 0 6u

xt -v -B 0 -BX 6tLtjf

-; 0 0 0 V t 8x
S"o o 0ouh

6v 0 0 0 B 6X (7-11)
6u 0 0 0 1 6u

6t tf b 0 0 1 tf 8t tf

The linearized differential equations are

4-•(6h) - 8 v (7-12)

d 2
t(v) - a os(cos BOX C os - 6X sin e)

t(6u) - -a sin e cos e(6X cos e - 6x sin e)

dt(6t) - 0

t t(6X) •- (6Xt) - 0

-r((6v) - -6Xh

where

68 - cos 6 (Oxv Cos 6 - 6Xu sin e) . (7-13)
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Letting 6Sh, k6X, 8u, and 8t equal 1, in turn, while

equating the others to 0 and integrating equations (7-12)

backward in time with initial conditions from equations

(7-10) and (7-11) we have

6Xh 1 0 0 0 66Xh
6X~ E 1 0 0 6x ] (7-14)
6X u 0 0 0 0 6u

6xt t -v -B 0 -BXh _6t_
" f tf

Shi a cos38 3  cos 3 e ~2 0 -t 8
6 2

v[a cos3O t 3
a s . . -a cost 0 B 8, (

6u a sin 6 cos 2  a sin ecos 2 E (7-15)

06t 0 0 0 1 La t ft t

where - tf - t.

Solving equations (7-14) and (7-15) for the delta

multipliers at time t in terms of the delta state var-

iables at time t, we have
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6h-1 0 v BE 66kE 2 0 vt BE2 6

6v 12 7 " 0 - BE 3

m .(7-16)6x a cos=0t 0 0 0 0 8u.
u v(Bi-v) 3

BE vt Bt2 BE2 ax h Cas'C°6t t
-t v- 7-- 7  . ... h tf t

6kh 2m6 6kh a2S
Then letting .;- -v -• , , etc., where 6h, 6v,

6u, and 6t are set equal to 1, in turn, we have

(2Si = 12 (7-17)

6ht a cos 3 6 (tf - t) 3

•2S 6

tV a cos 3 e (tf - t)z

a-vI a cos 3 0 (tf - t)

Evaluating 68 in equation (7-13) in a similar manner and

60 .e 6 Me
letting 6- and -g -r, we find

be - - 6
t a cos 0 (tf - t) 2  (7-18)

81tm 4

t a cos e (tf - t)
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The remaining boundary values necessary to initiate the

recurs ion are

a s (7-19)

as t(predetermined as a part
7-v an 8(t) of the nominal optimal

It traj ec tory)

.iIt-
This analysis of the boundary values has been more general

than necessary. However, it should serve to show the

utility of the method.



-38-

VIII. RESULTS

The performance of the linear feedback guidance scheme

was evaluated by comparing solutions using the scheme to

correct for initial condition perturbations about a nominal

(optimal) trajectory with true optimal trajectory solutions

for the same perturbed initial conditions. The optimal

trajectories were computed using the method of steepest

ascent [4].

The nominal optimal trajectory solved the problem

with the following constants and terminal conditions

a - 2g ft/sec
2

g - 32 ft/sec2

hf - 100,000 ft

vf - 0 ft/sec

tf - 100 sec.

The initial conditions of the nominal trajectory at time

t - 0 were

ho a 0 ft

vo - 0 ft/sec

u0 - 0 ft/sec.

The accuracy of the computer program was verified

by comparing nominal trajectory results from the computer

program with the desired terminal conditions and the

analytical solution for the optimal horizontal velocity,

u. The accuracy was considered excellent.
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Perturbations in the nominal trajectory were assumed

by varying the initial conditions of the problem. Table I

shows the various perturbations assumed and both the

Table I

Optimal Solution Guidance Scheme Solution

Case uf, ft/sec hf, ft vf, ft/sec uf, ft/sec

Nominal 3507.81

6h(o) - 1000 3569.94 100,000 0.75 3570.60

8h(o) - -1000 3443.43 100,000 -0.44 3442.53

6h(o) - 5000 3796.14 100,001 6.70 3798.61

6v(o) - 50 3733.78 100,000 3.29 3736.11

8v(o) = -50 3246.40 100,000 -0.46 3243.94

8t - 3 sec 2960.43 100,001 0.72 2957.31

computed optimal solution and the guidance scheme solution

based on the above nominal trajectory. (In all cases the

computed optimal solution satisfied the desired terminal

constraints within 0.1 ft in altitude and 0.1 ft/sec in

vertical velocity.) The feedback gains used are shown

plotted against time in Fig. 1. The last case shown,

6t - 3 sec, corresponds to the case where 97 seconds of

flight time remain; i.e., launch is three seconds late.
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Fig. 1--Time History of Feedback Gains for

Idealized Rocket Trajectory Problem
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This is analogous to the case of 6h - -138 ft and 6v -

-92 ft/sec aý. t - 3 sec, since the nominal trajectory had

an altitude of 13E 8 and a velocity of 92 ft/sec at time

3. Figure 2 presents a plot of 88 against time for this

case. This was the case of most extreme control correction.

It is impossible to precisely evaluate the perfor-

mance of the guidance scheme. However, the following

observations may be made:

1) The terminal altitude in all cases was highly

satisfactory.

2) The terminal vertical velocity was such that it

would require no more than one quarter of one

second additional flight time to drive the vertical

velocity to zero. (This is under the assumption

that a perturbation of 8h - -5000 would result

in a negative vf of f6.70 and that the available

acceleration was applied in the vertical direction.)

3) The final horizontal velocity was in all cases

within 0.1 of one per cent of the optimal

horizontal velocity. Note that in some cases

where terminal conditions are not quite met

"better than optimal" horizontal velocities result.
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Fig. 2--Time History of Control Correction
for 6t - 3 sec Case
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